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ABSTRACT

Large deviation estimates are by now a standard tool in Asymptotic Con-

vex Geometry, contrary to small deviation results. In this note we present

a novel application of a small deviations inequality to a problem that is

related to the diameters of random sections of high dimensional convex

bodies. Our results imply an unexpected distinction between the lower

and upper inclusions in Dvoretzky’s Theorem.

1. Introduction

In probability theory, the large deviation theory (or the tail probabilities) and

the small deviation theory (or the small ball probabilities) are in a sense two

complementary directions. The large deviation theory, which is a more classical

direction, seeks to control the probability of deviation of a random variable X

from its mean M , i.e. one looks for upper bounds on Prob(|X − M | > t). The

small deviation theory seeks to control the probability of X being very small,
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i.e. it looks for upper bounds on Prob(|X | < t). There are a number of excellent

texts on large deviations, see e.g. the recent books [DZ] and [dH]. A recent

exposition of the state of the art in small deviation theory can be found in [LS].

A modern powerful approach to large deviations is via the celebrated con-

centration of measure phenomenon. One of the early manifestations of this

idea was V. Milman’s proof of Dvoretzky’s Theorem in the 1970s. Recall that

Dvoretzky’s Theorem entails that any n-dimensional convex body has a section

of dimension c log n which is approximately a Euclidean ball. Since Milman’s

proof, the concentration of measure philosophy has played a major role in geo-

metric functional analysis and in many other areas. A recent book by M. Ledoux

[L] gives an account of many ramifications of this method. A standard instance

of the concentration of measure phenomenon is the case of a Lipschitz function

on the unit Euclidean sphere Sn−1. In view of the geometric applications, we

shall state it for a norm ‖ · ‖ on Rn , or equivalently for its unit ball, which is a

centrally-symmetric convex body K ⊂ Rn . We equip the sphere Sn−1 with the

unique rotation invariant probability measure σ. Two parameters are responsi-

ble for many geometric properties of the convex body K, the maximal and the

average values of the norm on the sphere Sn−1:

(1) b = b(K) = sup
x∈Sn−1

‖x‖, M = M(K) =

∫

Sn−1

‖x‖dσ(x).

The concentration of measure inequality, which appears e.g. in the first pages

of [MS], states that the norm is close to its mean M on most of the sphere. For

any t > 1,

(2) σ{x ∈ Sn−1 : |‖x‖ − M | > tM} < exp(−ct2k)

where

k = k(K) = n
(M(K)

b(K)

)2

.

Here and thereafter the letters c, C, c′, c̃, c1, c2 etc. denote some positive universal

constants, whose values may be different in various appearances. The symbol

≍ denotes equivalence of two quantities up to an absolute constant factor, i.e.

a ≍ b if ca ≤ b ≤ Ca for some absolute constants c, C > 0.

The concentration of measure inequality can of course be interpreted as a

large deviation inequality for the random variable ‖x‖, and the connection to

probability theory becomes even more sound when one recalls an analogous in-

equality for Gaussian measures; see [L]. The quantity k(K) plays a crucial role
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in high dimensional convex geometry, as it is the critical dimension in Dvoret-

zky’s Theorem. We will call this dimension k(K) the Dvoretzky dimension.

Milman’s proof of Dvoretzky’s Theorem [M1] (see also [MS1, 5.8]) provides ac-

curate information regarding the dimension of the almost spherical sections of

K. Milman’s argument shows that if l < ck(K), then with probability larger

than 1 − e−c′l, a random l-dimensional subspace E ∈ Gn,l satisfies

(3)
c

M
(Dn ∩ E) ⊂ K ∩ E ⊂ C

M
(Dn ∩ E),

where M = M(K), Dn denotes the unit Euclidean ball in Rn , and the ran-

domness is induced by the unique rotation invariant probability measure on the

grassmanian Gn,l of l-dimensional subspaces in Rn .

The Dvoretzky dimension k(K) was proved in [MS2] to be the exact critical

dimension for a random section to satisfy (3), in the following strong sense. If

a random l-dimensional subspace E ∈ Gn,l satisfies (3) with probability larger

than, say, 1 − 1/n, then necessarily l < Ck(K). Thus a random section of di-

mension l < ck(K) is close to Euclidean with high probability, and a random

section of dimension l > Ck(K) is typically far from Euclidean. These argu-

ments resolve the question of the dimensions in which random sections of a given

convex body are close to Euclidean. Once b(K) and M(K) are calculated, the

behavior of a random section is known. For instance, the Dvoretzky dimension

of the cube is ≍ log n, while the cross polytope K = {x ∈ Rn :
∑

|xi| ≤ 1} has

Dvoretzky dimension as large as k(K) ≍ n.

In this note we investigate Dvoretzky’s Theorem from a different direction,

which does not involve the standard large deviations inequality (2). The second-

named author conjectured that a phenomenon similar to the concentration

of measure should also occur for the small ball probability, and he proved

a weaker statement. The conjecture has been recently proved by R. Lata la

and K. Oleszkiewitz [LO], using the solution to the B-conjecture by Cordero,

Fradelizi and Maurey [CFM]:

Theorem 1.1 (Small ball probability): For every 0 < ε < 1
2 ,

σ{x ∈ Sn−1 : ‖x‖ < εM} < εck(K)

where c > 0 is a universal constant.

This theorem is related to the small ball probability (as a direction of the

probability theory) in exactly the same way as the concentration of measure is

related to large deviations. Here we apply Theorem 1.1 to study questions aris-

ing from Dvoretzky’s Theorem. We show that for some purposes, it is possible
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to relax the Dvoretzky dimension k(K), replacing it by a quantity independent

of the Lipschitzness of the norm (which is quantified by the Lipschitz constant

b(K)). Precisely, we wish to replace k(K) by

d(K) = min
{

− log σ
{

x ∈ Sn−1 : ‖x‖ ≤ 1

2
M

}

, n
}

,

where log stands for the natural logarithm. Selecting t = 1
2 in the concentration

of measure inequality (2), we conclude that d(K) must be at least of the same

order of magnitude as Dvoretzky’s dimension k(K):

d(K) ≥ Ck(K).

The small ball Theorem 1.1 indeed holds with d(K) (this is a part of the argu-

ment of Lata la and Oleszkiewicz, reproduced below). The resulting inequality

can be viewed as a Kahane–Khinchine type inequality for negative exponents:

Proposition 1.2 (Negative moments of a norm): Assume that 0 < ℓ < cd(K).

Then

cM <

(
∫

Sn−1

‖x‖−ℓdσ(x)

)− 1

ℓ

< CM

where c, C > 0 are universal constants.

For positive exponents, this inequality was proved in [LMS]: for 0<k<ck(K),

(4) cM <

(
∫

Sn−1

‖x‖kdσ(x)

)1/k

< CM.

For negative exponents −1 < ℓ < 0, inequality (4) follows from results of Guédon

[G] that generalize the Lovász–Simonovits inequality [LoSi]. Proposition 1.2

extends (4) to the range [−cd(K), ck(K)] (which of course includes the range

[−ck(K), ck(K)]).

In Proposition 1.2, ‖x‖−1 can be regarded as the radius of the one-dimensional

section of the body K. Combining this with the recent inequality for diameters

of sections due to the first-named author [K], we are able to lift the dimension

of the section and thus compute the average diameter of l-dimensional sections

of any centrally-symmetric convex body K.

Theorem 1.3 (Diameters of random sections): Assume that 0 < ℓ < cd(K).

Select a random ℓ-dimensional subspace E ∈ Gn,ℓ. Then with probability larger

than 1 − e−c′ℓ,

(5) K ∩ E ⊂ C

M
(Dn ∩ E).
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Furthermore,

(6)
c̄

M
<

(
∫

Gn,ℓ

diam(K ∩ E)ℓdµ(E)

)1/ℓ

<
C̄

M

where µ is the unique rotation invariant probability measure on Gn,ℓ, and

c, c′, c̄, C, C̄ > 0 are universal constants.

The relation between Theorem 1.3 and Dvoretzky’s Theorem is clear. We

show that for dimensions which may be much larger than k(K), the upper

inclusion in Dvoretzky’s Theorem (3) holds with high probability. This reveals

an intriguing point in Dvoretzky’s Theorem. Milman’s proof of Dvoretzky’s

Theorem focuses on the left-most inclusion in (3). Once it is proved that the

left-most inclusion in (3) holds with high probability, the right-most inclusion

follows almost automatically in his proof.

Furthermore, Milman–Schechtman’s argument [MS2] implies in fact that the

left-most inclusion does not hold (with large probability) for dimensions larger

than the Dvoretzky dimension. The reason that a random l-dimensional section

is far from Euclidean when l > ck(K) is that a typical section does not contain

a sufficiently large Euclidean ball. In comparison, we observe that the upper

inclusion in (3) holds for a much wider range of dimensions.

There are cases, such as the case of the cube, where the Dvoretzky dimension

satisfies k(K) ≍ log n, while d(K) is a polynomial in n. Hence, while sections of

the cube of dimension nc are already contained in the appropriate Euclidean ball

(for any fixed c < 1, independent of n), only when the dimension is ≍ log n, the

sections start to “fill from inside”, and an isomorphic Euclidean ball is observed.

The specific case of the cube is contained, using different terminology, in [LMT].

The fact that d(K) is typically larger than k(K) is a little unexpected. It implies

that the correct upper bound for random sections of a convex body appears

sometimes in much larger dimensions than those for which we have the lower

bound.

In the past decade, diameters of random lower-dimensional sections of convex

bodies attracted a considerable amount of attention; see in particular [GM1,

GM2, GMT]. Theorem 1.3 is a significant addition to this line of results. It

implies that diameters of random sections are equivalent for a wide range of

dimensions — starting from dimension one, when the random diameter simply

equals 1/M(K), and up to the critical dimension d(K). See also Remark 1 right

after the proof of Theorem 1.3.
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Remark: The proof shows that d(K) can be further relaxed in all of our results.

For any fixed u > 1, the parameter d(K) can be replaced by

du(K) = min
{

− log σ
{

x ∈ Sn−1 : ‖x‖ ≤ 1

u
M

}

, n
}

.

The rest of the paper is organized as follows. In Section 2 we discuss the

negative moments of the norm, proving Proposition 1.2 and Theorem 1.1 by the

Lata la–Oleszkiewicz argument. In Section 3 we perform the “dimension lift”

and compute the average diameters of random sections, proving Theorem 1.3.

2. Concentration of measure and the small ball probability

We begin by proving Proposition 1.2. This proposition is a reformulation of

the “small ball probability conjecture” due to the second-named author. It was

recently deduced by R. Lata la and K. Oleszkiewicz [LO] from the B-conjecture

proved by Cordero, Fradelizi and Maurey [CFM]. We will reproduce the Lata la–

Oleszkiewicz argument here. We start with a standard and well-known lemma,

on the close relation between the uniform measure σ on the sphere Sn−1 and the

standard gaussian measure γ on Rn . For the reader’s convenience, we include

its proof.

Lemma 2.1: For every centrally-symmetric convex body K ⊂ Rn ,

1

2
σ(Sn−1 ∩ 1

2
K) ≤ γ(

√
nK) ≤ σ(Sn−1 ∩ 2K) + e−cn

where c > 0 is a universal constant.

Proof: We will use the following two estimates on the Gaussian measure of the

Euclidean ball,

γ(2
√

nDn) >
1

2
, γ(

1

2

√
nDn) < e−cn.

The first estimate is simply Chebychev’s inequality, and the second follows from

standard large deviation inequalities, e.g. Cramer’s Theorem [V]. Since K is

star-shaped,
γ(
√

nK) ≥ γ(2
√

nDn ∩
√

nK)

≥ γ(2
√

nDn)σ1(2
√

nSn−1 ∩
√

nK)

where σ1 denotes the probability rotation invariant measure on the sphere

2
√

nSn−1,

≥ 1

2
σ(Sn−1 ∩ 1

2
K).

This proves the lower estimate in the lemma.
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For the upper estimate, note that no points of
√

nK can lie outside both the

ball 1
2

√
nDn and the positive cone generated by 1

2Sn−1∩√
nK. Adding the two

measures together, we obtain

γ(
√

nK) ≤ γ(
1

2

√
nDn) + σ2(

1

2

√
nSn−1 ∩

√
nK)

where σ2 denotes the probability rotation invariant measure on the sphere
1
2

√
nSn−1,

≤ e−cn + σ(Sn−1 ∩ 2K).

This completes the proof.

Proof of Proposition 1.2: As usual, K will denote the unit ball of the norm

‖ · ‖. The B-conjecture, proved in [CFM], asserts that the function t 7→ γ(etK)

is log-concave. This means that for any a, b > 0 and 0 < λ < 1,

(7) γ(aλb1−λK) ≥ γ(aK)λγ(bK)1−λ.

Let Med = Med(K) be the median of the norm ‖ · ‖ on the unit sphere Sn−1.

By Chebychev’s inequality, Med ≤ 2M(K). Set L = Med · √nK. According to

Lemma 2.1,

(8) γ(2L) ≥ 1

2
σ(Sn−1 ∩ Med · K) ≥ 1

4

by the definition of the median. On the other hand, again by Lemma 2.1,

(9)

γ(
1

8
L) ≤ σ

(

Sn−1 ∩ 1

4
Med · K

)

+ e−cn

= σ
(

x ∈ Sn−1 : ‖x‖ ≤ 1

4
Med

)

+ e−cn

≤ σ
(

x ∈ Sn−1 : ‖x‖ ≤ 1

2
M(K)

)

+ e−cn

≤ e−d(K) + e−c′n < 2e−Cd(K)

because d(K) ≤ n. Let 0 < ε < e−3, and apply (7) for a = ε, b = 2,

λ = 3/ log(1/ε). This yields

γ(εL)3/ log(1/ε)γ(2L)1−3/ log(1/ε) ≤ γ(ε3/ log(1/ε)21−3/ log(1/ε)L) ≤ γ(
1

8
L).

Combining this with (8) and (9), we obtain that

γ(εL) ≤ 8eC′d(K) log ε ≤ 8εcd(K) < (c′ε)cd(K)
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and according to Lemma 2.1 we can transfer this to the spherical measure,

obtaining

σ(x ∈ Sn−1 : ‖x‖ < εM) < (Cε)cd(K).

By integration by parts, this yields that for any 0 < ℓ < cd(K)/10,

(
∫

Sn−1

‖x/M‖−ℓdσ(x)

)1/ℓ

≤ C,

which implies the left hand side of the inequality in Proposition 1.2. The right

hand side follows easily by Hölder’s inequality.

By Chebychev’s inequality, Proposition 1.2 yields the desired tail inequality

for the small ball probability:

Corollary 2.2 (The small ball probability): For every 0 < ε < 1
2 ,

σ{x ∈ Sn−1 : ‖x‖ < εM} < εcd(K) < εc′k(K),

where c, c′ > 0 are universal constants.

Theorem 1.1 is contained in Corollary 2.2. Let us offer some interpretation of

the expression in Proposition 1.2. For a subspace E ⊂ Rn , let S(E) = Sn−1∩E

and let σE be the unique rotation invariant probability measure on the sphere

S(E). We will use the fact that Vol(K) = Vol(Dn)
∫

Sn−1 ‖x‖−ndσ(x). The

volume radius of a k-dimensional set T is defined as

v.rad.(T ) =
( Vol(T )

Vol(Dk)

)1/k

.

Thus

v.rad.(K) =

(
∫

Sn−1

‖x‖−ndσ(x)

)1/n

,

for an n-dimensional body K. By the rotation invariance of all the measures

(as in [K]), we conclude that

(10)

∫

Sn−1

‖x‖−kdσ(x) =

∫

Gn,k

∫

S(E)

‖x‖−kdσE(x)dµ(E)

=

∫

Gn,k

v.rad.(K ∩ E)kdµ(E),

where, as before, µ is the unique rotation invariant probability measure on

Gn,k. Thus Proposition 1.2 asymptotically computes the average volume radius

of random sections. This perfectly fits the estimates for diameters of sections

in [K], to be applied next.
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3. Diameters of random sections

In this section we prove the main result of the paper, Theorem 1.3. We re-

gard ‖x‖−1 as the radius of the one-dimensional section spanned by x; thus

Proposition 1.2 is an asymptotically sharp bound on the diameters of random

one-dimensional sections. Theorem 1.3 extends this bound to k-dimensional

sections, for all k up to the critical dimension d(K). We start with a “dimen-

sion lift”, which is based on the “low M estimate”, Proposition 3.9 in [K] (the

case λ = 1
2 there). Here we estimate the Lk norm, rather than only the tail

probability as in Proposition 3.9 in [K].

Proposition 3.1 (Dimension lift for diameters of sections): Let 1 ≤ k0 < n.

Then for any integer k < k0/4,

(
∫

Gn,k

diam(K ∩ E)kdµ(E)

)1/k

≤ CM(K)

(
∫

Sn−1

‖x‖−k0dσ(x)

)2/k0

.

Remark: Note the special normalization in Proposition 3.1 (compare with

Proposition 3.9 in [K]). In fact, as follows from the proof, for any λ > 0, the

right hand side of Proposition 3.1 may be replaced by

C(λ)M(K)λ

(
∫

Sn−1

‖x‖−k0dσ(x)

)(1+λ)/k0

at the cost of replacing the requirement k < k0/4 by k < c(λ)k0 (simply replace

the Cauchy–Schwartz inequality with the appropriate Hölder inequality in the

proof). However, we cannot have λ = 0, as is demonstrated by the example

where K = Rn−1 . The average diameter of one-dimensional sections of K is zero,

while the diameter of any section of dimension larger than one is infinity. Thus

there cannot be any formal dimension lift unless one has an extra factor which

must be infinity for “flat” bodies. Such a factor is M(K) =
∫

Sn−1 ‖x‖dσ(x).

In order to prove Theorem 1.2 we need a standard lemma on the stability of

the average norm M . We are unaware of a reference for the exact statement we

need (a similar result appears e.g. in Lemma 6.6 of [M2]), so a proof is provided.

The average norm on a subspace E ∈ Gn,k is denoted by ME =
∫

S(E) ‖x‖dσE(x).

Lemma 3.2: For every norm ‖ · ‖ on Rn and every integer 0 < k < n,

(11) cM <

(
∫

Gn,k

(ME)2kdµ(E)

)1/2k

< CM

where c, C > 0 are universal constants.
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Proof: The left hand size inequality in (11) follows easily from Hölder’s in-

equality. In the proof of the right hand side inequality, we will use a variant of

Raz’s argument (see [R, MW]). We normalize so that M = 1. Let X1, . . . , Xk be

k independent random vectors, distributed uniformly on Sn−1. It is well-known

that a norm of a random vector on the sphere has a subgaussian tail (e.g. [LMS,

3.1]. It actually follows from (2) above):Eexp(s‖Xi‖) < exp(cs2) for all i and all s > 1

which by independence impliesEexp

(

s · 1

k

k
∑

i=1

‖Xi‖
)

< exp
(Cs2

k

)

for s > 1.

Using Chebychev’s inequality and optimizing over s (e.g. [MS1, 7.4]), we obtain

(12) Prob

{

1

k

k
∑

i=1

‖Xi‖ > Ct

}

< exp(−t2k) for t > 1.

Let E be the linear span of X1, . . . , Xk. Then E is distributed uniformly in Gn,k

(up to an event of measure zero). Since for any two events one has Prob(A) ≤
Prob(B)/ Prob(B|A), we conclude that

(13) Prob{ME > 2ct} ≤ Prob{ 1
k

∑k
i=1 ‖Xi‖ > ct}

Prob{ 1
k

∑k
i=1 ‖Xi‖ > ct|ME > 2ct}

.

The numerator in (13) is bounded by (12). To bound the denominator from

below, note that ‖Xi‖ < C
√

kME pointwise for all i; this is a consequence of

a simple comparison inequality for the Gaussian analogs of M and ME (see

e.g. [MS1, 5.9]). Let us fix a subspace E ∈ Gn,k. Note that, conditioning on

E = span{X1, . . . , Xk}, each of the vectors Xi is distributed uniformly in S(E).

Next, we estimate the probability

PE = Prob

{

1

k

k
∑

i=1

‖Xi‖ >
ME

2
| span{X1, . . . , Xk} = E

}

via Chebychev’s inequality as

ME = E(

1

k

k
∑

i=1

‖Xi‖
∣

∣

∣
span{X1, . . . , Xk} = E

)

≤ C
√

kMEPE +
ME

2
(1 − PE).
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Hence PE ≥ c̄/
√

k for every E ∈ Gn,k. Thus,

denominator in (13) ≥ Prob

{

1

k

k
∑

i=1

‖Xi‖ >
ME

2

∣

∣

∣
ME > 2ct

}

=
1

Prob{E ∈ Gn,k; ME > 2ct}

∫

E∈Gn,k;ME>2ct

PEdµ(E)

≥ min
E∈Gn,k

PE ≥ c̄/
√

k.

Combining this with (12) and (13) we get

Prob{ME > 2ct} < c
√

ke−t2k < e−Ct2k for t > 1.

By integration by parts we obtain the desired estimate.

Proof of Proposition 3.1: By the Hölder inequality, the right hand side increases

with k0, hence we may assume that k0 = 4k. We shall rely on the main result

in [K], which claims that for any centrally-symmetric convex body T ⊂ Rn , and

for all 0 < k ≤ l < n,

(14) v.rad.(T ) > C

(
∫

Gn,k

v.rad.(T ∩ E)l diam(T ∩ E)n−ldµ(E)

)1/n

.

We are going to apply (14) to T = K ∩ E, for subspaces E ∈ Gn,k0
. Denote by

GE,k the grassmanian of all k-dimensional subspaces of E, equipped with the

unique rotational invariant probability measure µE . Then by (10), (14) and the

rotational invariance of all measures,
∫

E∈Gn,k

v.rad.(K ∩ E)2k diam(K ∩ E)2kdµ(E)

=

∫

E∈Gn,4k

∫

F∈GE,k

v.rad.(K ∩ F )2k diam(K ∩ F )2kdµE(F )dµ(E)

≤ Ck0

∫

E∈Gn,k0

v.rad.(K ∩ E)k0dµ(E) = Ck0

∫

Sn−1

‖x‖−k0dσ(x).

Also, by the Cauchy–Schwartz inequality,

(
∫

E∈Gn,k

diam(K ∩ E)kdµ(E)

)
1

k

≤
(

∫

E∈Gn,k

v.rad.(K ∩ E)2k diam(K ∩ E)2kdµ(E)

)
1

2k

×
(

∫

E∈Gn,k

1

v.rad.(K ∩ E)2k
dµ(E)

)
1

2k

.
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We will use the standard inequality

1

v.rad.(K ∩ E)
≤ ME ,

which follows directly from the Hölder inequality. Then,

(
∫

E∈Gn,k

diam(K ∩ E)kdµ(E)

)
1

k

≤ C

(
∫

Sn−1

‖x‖−k0dσ(x)

)
2

k0

(
∫

E∈Gn,k

(ME)2kdµ(E)

)
1

2k

and the proposition follows by Lemma 3.2.

Proof of Theorem 1.3: It is sufficient to prove (6), since (5) follows by Cheby-

chev’s inequality. The left hand side inequality is clear. According to Propo-

sition 3.1 and Proposition 1.2, the right hand side inequality of (6) follows,

as

(
∫

Gn,ℓ

diam(K ∩ E)ℓdµ(E)

)
1

ℓ

< CM(K)
( C

M(K)

)2

≤ C′

M(K)
.

Remarks. 1. (Optimality): The estimate ℓ < cd(K) in Theorem 1.3 is essen-

tially optimal, for any centrally-symmetric convex K ⊂ Rn . Indeed, suppose

that ℓ > du(K) for some u ≫ 1. Then,

(15)

(
∫

Sn−1

‖x‖−ℓdσ(x)

)
1

ℓ

>
u

M
e−1 ≫ 1

M
.

Since we always have diam(K ∩ E) ≥ 2 v.rad.(K ∩ E), then by (15) and (10),

(
∫

Gn,ℓ

diam(K ∩ E)ℓdµ(E)

)
1

ℓ

≫ 1

M
.

Thus, (6) cannot hold for ℓ > du(K) when u ≫ 1.

2. (Example of the cube): Suppose K = Bn
∞ is a cube, the unit ball of ln∞,

and let us estimate du(K). It is well-known that

c

√

log n

n
< M(Bn

∞) < C

√

log n

n
.
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According to Lemma 2.1, we may equivalently carry out our computations in

the Gaussian setting. Now, for t > 0,

γ(t
√

log nBn
∞) =

n
∏

i=1

Prob{|X | ≤ t
√

log n} = (1 − 2Φ(t
√

log n))n

where X ∼ N(0, 1) is a standard normal random variable, and

Φ(s) =

∫ ∞

s

1√
2π

e−u2/2du.

For s > 1, a crude estimate gives e−c1s2

< Φ(s) < e−c2s2

. Thus, when t > 10√
log n

,

exp(−c′1n
1−c′

2
t2) < γ(t

√

log nBn
∞) < exp(−c1n

1−c2t2).

Therefore, by Lemma 2.1,

c1n
1−c1/u2

< du(Bn
∞) < c2n

1−c2/u2

for any u > 1. Theorem 1.3 implies that random sections of this (polynomial!)

dimension du(Bn
∞) have a diameter ≍ 1/M(Bn

∞).

3. (Example of the lp ball): Consider K = Bn
p , the unit ball of lnp , for some

fixed 1 ≤ p < ∞. In this case, the conclusion of Theorem 1.3 is well-known. For

1 ≤ p ≤ 2, we know that k(Bn
p ) > cn (e.g. [MS1, 5.4]), hence also d(Bn

p ) > cn

and the conclusion of the theorem follows from the classical Dvoretzky Theorem.

In the case where 2 < p < ∞, we have

Bn
p ⊂ cp

M(Bn
p )

Dn,

and thus the conclusion of Theorem 1.3 is obvious in this case (with constants

depending on p), and dcp
(Bn

p ) > Cpn, for some constants cp, Cp depending only

on p.
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